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ABSTRACT 

This paper examines the elements necessary for a practical and successful 
computerized horse race handicapping and wagering system. Data requirements, 
handicapping model development, wagering strategy, and feasibility are addressed. 
A logit-based technique and a corresponding heuristic measure of improvement are 
described for combining a fundamental handicapping model with the public's 
implied probability estimates. The author reports sigmficant positive results in five 
years of actual implementation of such a system. This result can be interpreted as 
evidence of inefficiency in pari-mutuel racetrack wagering. This paper aims to 
emphasize those aspects of computer handicapping which the author has found most 
important in practical application of such a system. 

INTRODUCTION 

The question of whether a fully mechanical system can ever "beat the races" has been widely 
discusscd in both the academic and popular literature. Cettun authors have convincingly 
demonstrated that profitable wagering systems do exist for the races. The most well documented of 
these have generally been of the technical variety, that is, they are concerned mainly with the public 
odds, and do not attempt to predict horse performance from fundamental factors. Technical systems 
for place and show betting, (Ziemba and Hausch, 1987) and exotic pool betting, (Ziemba and Hausch, 
1986) as well as the 'odds movement' system developed by Asch and Quandt (1986), fall into t h i s  
category. A benefit of these systems is that they require relatively little preparatory effort, and can be 
effectively employed by the occasional racegoer. Their downside is that betting opportunities tend to 
occur infrequently and the maximum expected profit achievable is usually relatively modest. It is 
debatable whether any racetracks exist where these systems could be profitable enough to sustain a 
full-time professional effort. 

To be truly viable, a system must provide a large number of high advantage betting opportunities 
in order that a sufhient amount of expected profit can be generated. An approach which does 
promise to provide a large number of betting opportunities is to fundamentally handicap each race, 
that is, to empirically assess each horse's chance of winning, and utilize that assessment to find 
profitable wagering opportunities. A natural way to attempt to do this is to develop a computer model 
to estimate each horse's probability of winning and calculate the appropriate amount to wager. 

A complete survey of this subject is beyond the scope of this paper. The general requirements for 
a computer based fundamental handicapping model have been well presented by Bolton and Chapman 
(1986) and Brecher (1980). These two references are "required reading" for anyone interested in 
developing such a system. Much of what is said here has already been explained in those two works, 
as is much of the theoretical background which has been omitted here. What the author would hope to 
add, is a discussion of a few points which have not been addressed in the literature, some practical 
recommendations, and a report that a fundamental approach can in fact work in practice. 

FEATURES OF THE COMPUTER HANDICAPPING APPROACH 

Several features of the computer approach give it advantages over traditional handicapping. First, 
because of its empirical nature, one need not possess specific handicapping expertise to undertake this 
cnterprise, as everything one needs to know can be learned from the data. Second is the testability of a 
computer system. By carefully partitioning data, one can develop a model and test it on unseen races. 
With this procedure one avoids the danger of overfitting past data. Using this 'holdout' technique, one 
can obtain a reasonable estimate of the system's real-time performance before wagering any actual 
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money. A third positive attribute of a computerized handicapping system is its consistency. 
Handicapping races manually is an extremely taxing undertaking. A computer will effortlessly 
handicap races with the same level of care day after day, regardless of the mental state of the operator. 
This is a non-trivial advantage considering that a professional level betting operation may want to bet 
several races a day for extended periods. 

The downside of the computer approach is the level of preparatory effort necessary to develop a 
winning system. Large amounts of past data must be collected, verified and computerized. In the past, 
this has meant considerable manual entry of printed data. This situation may be changing as optical 
scanners can speed data entry, and as more online horseracing database services become available. 
Additionally, several man-years of programming and data analysis will probably be necessary to 
develop a sufkiently profitable system. Given these considerations, it is clear that the computer 
approach is not suitable for the casual racegoer. 

HANDICAPPING MODEL DEVELOPMENT 

The most Wicult and time-consuming step in creating a computer based betting system is the 
development of the fundamental handicapping model. That is, the model whose final output is an 
estimate of each horse's probability of winning. The type of model used by the author is the 
multinomial logit model proposed by Bolton and Chapman (1986). This model is well suited to horse 
racing and has the convenient property that its output is a set of probability estimates which sum to 1 
within each race. 

The overall goal is to estimate each horse's current performance potential. "Current performance 
potential" being a single overall summruy index of a horse's expected performance in a particular 
race. To construct a model to estimate current performance potential one must investigate the 
available data to find those variables orfactors which have predictive significance. The profitability of 
the resulting betting system will be largely determined by the predictive power of the factors chosen 
The odds set by the public betting yield a sophisticated estimate of the horses' win probabilities. In 
order for a fundamental statistical model to be able to compete effectively, it must rival the public in 
sophistication and comprehensiveness. Various types of factors can be classified into groups: 

Current condition: 
- performance in recent races 
- time since last race 
- recent workout data 
- age of horse 

Past performance: 
- finishing position in past races 
- lengths behind winner in past races 
- normalized times of past races 

Adjustments to past performance: - strength of competition in past races 
-weight carried in past races 
-jockey's contribution to past performances 
- compensation for bad luck in past races 
- compensation for advantageous or disadvantageous post position in past races 

Present race situational factors: 
- weight to be carried 
- today's jockey's ability 
- advantages or disadvantages of the assigned post position 

Preferences which could influence the horse's performance in today's race: 
- distance preference 
- surface preference (turfvs dirt) 
- condition of surface preference (wet vs dry) 
- specific track preference 
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More detailed discussions of fundamental handicapping can be found in the extensive popular 
literature on the subject (for the author's suggested references see the list in the appendix). The data 
needed to calculate these factors must be entered a d  checked for accuracy. This can involve 
considerable effort. Often, multiple sources must be used to assemble complete past performance 
records for each of the horses. This is especially the case when the horses have run past races at many 
Werent  tracks. The easiest type of racing jurisdiction to collect data and develop a model for is one 
with a closed population of horses, that is, one where horses from a single population race only 
against each other at a limited number of tracks. When horses have raced at venues not covered in the 
database, it is difficult to evaluate the elapsed times of races and to estimate the strength of their 
opponents. Also unknown will be the post position biases, and the relative abilities of the jockeys in 
those races. 

In the author's experience the minimum amount of data needed for adequate model development 
and testing samples is in the range of 500 to lo00 races. More is helpful, but out-of-sample predictive 
accuracy does not seem to improve dramatically with development samples greater than 1000 races. 
Remember that dofafor one race means full past data on all of the runners in that race. This suggests 
another advantage of a closed racing population; by collecting the results of all races run in that 
jurisdiction one automatically accumulates the full set of past performance data for each horse in the 
population. 

It. is important to define factors which extract as much information as possible out of the data in 
each of the relevant areas. As an example, consider three different specifications of a 'distance 
preference' factor. 

The first is from Bolton and Chapman (1986): 

'NEWDIST' - this variable equals one if a horse has run three of its four previous 
races at a distance less than a mile, zero otherwise. (Note: Bolton and Chapman's 
model was only used to predict races of 1 - 1.25 miles.) 

The second is from Brecher (1980): 

'DOK' - this variable equals one if the horse finished in the upper 50th percentile or 
within 6.25 lengths of the winner in a prior race within 1/16 of a mile of today's 
distance, or zero otherwise 

The last is from the author's current model: 

'DPGA' - for each of a hone's past races, a predicted finishing position is calculated 
via multiple regression based on all factors except those relating to distance. This 
predicted finishing position in each race is then subtracted from the horse's actual 
finishing position. The resulting quantity can be considered to be the unexplained 
residual which may be due to some unknown distance preference that the horse may 
possess plus a certain amount of random error. To estimate the horse's preference 
or aversion to today's distance, the residual in each of its past races is used to 
estimate a linear relationship between performance and similarity to today's distance. 
Given the statistical uncertainty of estimating this relationship from the usually small 
sample of past races, the final magnitude of the estimate is standardized by dividing 
it by its standard error. The result is that horses with a clearly defined distance 
preference demonstrated over a large number of races will be awarded a relatively 
larger magnitude value than in cases where the evidence is less clear. 

The last factor is the result of a large number of progressive refinements. The subroutines 
involved in calculating it run to several thousand lines of code. The author's guiding principle in 
factor improvement has been a combination of educated guessing and trial and error. Fortunately, the 
historical data makes the final decision as to which particular definition is superior. The best is the 
one that produces the greatest increase in predictive accuracy when included in the model. The 
general thrust of model development is to continually experiment with refinements of the various 
factors. Although time-consuming, the gains are worthwhile. In the author's experience, a model 
involving only simplistic specifications of factors does not provide sufficiently accurate estimates of 
winning probabilities. Care must be taken in this process of model development not to overfit past 
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data. Some ovetiitting will always occur, and for this reason it is important to use data partitioning to 
maintain sets of unseen races for out-of-sample testing. 

The complexity of predicting horse performance makes the specification of an elegant 
handicapping model quite diflicult. Ideally, each independent variable would capture a unique aspect 
of the influences effecting horse performance. In the author's experience, the trial and error method of 
adding independent variables to increase the model's goodness-of-fit, results in the model tending to 
become a hodgepodge of highly correlated variables whose individual significances are difficult to 
determine and often counter-intuitive. Although aesthetically unpleasing, this tendency is of little 
consequence for the purpose which the model will be used, namely, prediction of future race 
outcomes. What it does suggest, is that careful and conservative statistical tests and methods should be 
used on as large a data sample as possible. 

For example, "number of past races" is one of the more significant factors in the author's 
handicapping model, and contributes greatly to the overall accuracy of the predictions. The author 
knows of no 'common sense' reason why this factor should be important. The only reason it can be 
confidently included in the model is because the large data sample allows its significance lo be 
established beyond a reasonable doubt. 

Additionally, there will always be a significant amount of 'inside information' in horse racing 
that cannot be readily included in a statistical model. Trainer's and jockey's intentions, secret 
workouts, whether the horse ate its breakfast, and the like, will be available to certain parties who 
will no doubt take advantage of it. Their betting will be reflected in the odds. This presents an 
obstacle to the model developer with access to published information only. For a statistical model to 
compete in this environment, it must make full use of the advantages of computer modelling, namely, 
the ability to make complex calculations on large data sets, 

CREATING UNBIASED PROBABILITY ESTIMATES 

It can be presumed that valid fundamental information exists which can not be systematically or 
practically incorporated into a statistical model. Therefore, any statistical model, however well 
developed, will always be incomplete. An extremely important step in model development, and one 
that the author believes has been generally overlooked in the literature, is the estimation of the 
relation of the model's probability estimates to the public's estimates, and the adjustment of the 
model's estimates to incorporate whatever information can be gleaned from the public's estimatcs. 

The public's implied probability estimates generally correspond well with the actual frequcncics 
of winning. This can be shown with a table of estimated probability versus actual frequency of 
winning (Table 1). 

Table 1 Table 2 

PUBLIC ESTIMATE VS. ACTUAL FREQUENCY FUNDAMENTAL MODEL VS. ACTUAL FREQUENCY 

range n sup. act. 2 range n exp. act. 2 

.ooo-,010 
,010-,025 
.025-,050 
.050-.lo0 
.loo-. 150 
.150-,200 
.ZOO-,250 
.250-,300 
.300-,400 

> ,400 

1343 
4356 
6193 
8720 
5395 
3016 
1811 
1015 
716 
31 2 

.007 

.O 1 7 

.037 
,073 
,123 
.172 
,222 
,273 
,339 
,467 

,007 
,020 
,042 
.069 
,125 
,173 
.219 
,253 
,339 
.484 

0.0 
1.3 
2.1 

-1.5 
0.6 
0.1 

-0.3 
-1.4 
0.0 
0.6 

.ooo-,010 

.010-.025 
,025-,050 
,050-.lo0 
.loo-. 1 50 
,150-.ZOO 
,200-.250 
,250-,300 
,300-.400 

> ,400 

1173 
3641 
6503 
9642 
5405 
2979 
1599 
870 
741 
324 

.006 

.o 1 8 
,037 
.073 
. 1 23 
.173 
,223 
,272 
,341 
,475 

,005 
,015 
,037 
.074 
.120 
.183 
.232 
,285 
,320 
.432 

-0.6 
-1.2 
-0.3 
0.1 
-0.7 
1.6 
0.9 
0.9 

-1.2 
-1.6 

# races = 3198, # horses = 32877 #races = 3198. #horses = 32877 

range = the range of estimated probabilities 
n = the number of horses falling within a range 

exp. = the mean expected probability 
act. = the actual win frequency observed 
Z = the discrepancy ( +  or - ) in units of standard errors 

In each range of estimated probabilities, the actual frequencies correspond closely. This is not the 
case at all tracks (Ah, 1977) and if not, suitable corrections should be made when using the public's 
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probability estimates for the purposes which will be discussed later. (Unless otherwise noted, data 
samples consist of all races run by the Royal Hong Kong Jockey Club from Scptember 1986 through 
June 1993.) 

A multinomial logit model using fundamental factors will also naturally produce an internally 
consistent set of probability estimates (Table 2). Here again there is generally good correspondence 
between estimated and actual frequencies. Table 2 however conceals a major, (and from a wagering 
point of view, disastrous) type of bias inherent in the fundamental model's probabilities. Consider the 
following two tables which represent roughly equal halves of the sample in Table 2. Table 3 shows the 
fundamental model's estimate versus actual frequency for those horses where the public's probability 
estimate was greater the fundamental model's. Table 4 is the same except that it is for those horses 
whose public estimate was less than the fundamental model's. 

Table 3 

FUNDAMENTAL MODEL VS. ACTUAL FREQUENCY 
WHEN PUBLIC ESTIMATE IS GREATER THAN MODEL 
ESTIMATE 

range n exp. act. Z 

.ooo-,010 
,010-,025 
,025-,050 
,050.. 100 
. loo-. 150 
,150-,200 
.200-.250 
.250-,300 
,300-.400 

> ,400 

920 ,006 
2130 ,017 
3454 .037 
4626 ,073 
2413 ,122 
1187 .172 
540 ,223 
252 ,270 
165 ,342 
54 .453 

,005 
,018 
.044 
.09 1 
,147 
.227 
.302 
,333 

,519 
,448 

# races = 3198, # horses = 15741 

-0.3 
0.3 
2.1 
4.7 
3.7 
5.0 
4.4 
2.3 
2.9 
1 .o 

Table 4 

FUNDAMENTAL MODEL VS. ACTUAL FREQUENCY 
WHEN PUBLIC ESTIMATE IS LESS THAN MODEL 
ESTIMATE 

range n exp. act. Z 

,000-.o 10 
,010-.025 
.025-,050 
,050-,100 
,100-,150 
,150-,200 
.200-,250 
,250-.300 
,300-.400 

> .400 

253 
1511 
3049 
501 6 
2992 
1792 
1059 
618 
576 
270 

,007 
,018 
,037 
.074 
,123 
.173 
,223 
.273 
,341 
.480 

,004 
,011 
,029 
,058 
,098 
.154 
,196 
.265 
,283 
.415 

X races = 3198, # horses = 17136 

-0.6 
-2.2 
-2.6 
-4.3 
-4.2 
-2.1 
-2.1 
-0.4 
-2.9 
-2.1 

There is an extreme and consistent bias in both tables. In virtually every range the actual frequency is 
significantly different than the fundamental model's estimate, and always in the direction of being 
closer to the public's estimate. The fundamental model's estimate of the probability cannot be 
considered to be an unbiased estimate independent of the public's estimate. Table 4 is particularly 
important because it is comprised of those horses that the model would have one bet on, that is, horses 
whose model-estimated probability is greater than their public probability. It is necessary to correct for 
this bias in order to accurately estimate the advantage of any particular bet.' 

In a sense, what is needed is a way to combine the judgements of two experts, (i.e. the 
fundamental model and the public). One pract id  technique for accomplishing this is as follows: 
(Asch and Quandt, 1986; pp. 123-125). See also White, Dattero and Flores, (1992). 

Estimate a second logit model using the two probability estimates as independent variables. For a race 
with entrants (1.2,. . .,N) the win probability of horse i is given by: 

e x p ( a f ,  + P x , )  
ci = 

Cexp( a f ,  + P x, 1 (forj= I t o N )  

f, = log of 'out-of-sample' fundamental model probability estimate 
71, = log of public's implied probability estimate 
ci = combined probability estimate 

(Natural log of probability is used rather than probability as this transformation provides a better f i t )  

Given a set of past races (1,2, . . . 8) for which both public probability estimates and fundamental 
model estimates are available, the parameters a and P can be estimated by maximizing the log 
likelihood function of the given set of races with respect to a and P: 
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where cli. denotes the probability as given by equation (1) for the horse i* observed to win race j 
(Bolton and Chapman, 1986 p. 1044). Equation (1) should be evaluated using fundamental probability 
estimates from a model developed on a separate sample of races. Use of 'out-of-sample' estimates 
prevents overestimation of the fundamental model's sigrufcance due to 'custom-fitting' of the model 
development sample. The estimated values of a and p can be interpreted roughly as the relative 
correctness of the model's and the public's estimates. The greater the value of a, the better the model. 
The probabilities that result from this model also show good correspondence between predicted and 
actual frequencies of winning nable  5).  

Tabla 6 

COMBINED MODEL VS. ACTUAL FREQUENCIES 

range n e x p .  act. Z 

.ow-.010 

.010-.025 

.025-.050 

.050-.lo0 

.loo-. 1 50 
,150-.200 
,200-. 250 
,250-,300 
,300-,400 

> .400 

1520 
4309 
6362 
8732 
51 19 
2974 
1657 
993 
853 
358 

.007 
,017 
,037 
,073 
,123 
,173 
,223 
.272 
.340 
,479 

,005 
,018 
.038 
,071 
,119 
,180 
,223 
.281 
.328 
,492 

-1 .o 
0.1 
0.6 

-0.5 
-0.8 
1 .o 
0.0 
0.6 
0.7 
0.5 

#races = 3198. #horses = 32877 

By comparison with Tables 1 and 2,  Table 5 shows that there is more spread in the combined model's 
probabilities than in either the public's or the fundamental model's alone, that is, there are more 
horses in both the very high and very low probability ranges. This indicates that the combined model 
is more informative. More important is that the new probability estimates are without the bias shown 
in Tables 3 and 4, and thus are suitable for the accurate estimation of betting advantage. This is borne 
out by Tables 6 and 7, which are analogous to Tables 3 and 4 above except that they use the combined 
model probabilities instead of the raw fundamental model probabilities. 

Tabla 6 

COMBINED MODEL VS. ACTUAL FREQUENCY 
WHEN PUBLIC ESTIMATE IS GREATER THAN MODEL 
ESTIMATE 

range n e x p .  act. Z 

.000-.010 

.010-.025 

.025-,050 

.050-.lo0 

.loo-.150 
,150-.200 
.200-.250 
.250-.300 
,300-.400 

> ,400 

778 
1811 
2874 
4221 
2620 
1548 
844 
493 
393 
159 

,006 
.017 
.037 
.073 
,123 
.173 
,223 
,272 
,337 
,471 

.005 

.O 1 5 
,035 
,073 
,116 
,185 
,231 
.292 
,349 
,509 

# races = 3198, # horses = 15741 

-0.4 
-0.6 
-0.7 
0.0 
-1 .o 
1.2 
0.6 
1 .o 
0.5 
1 .o 

Table 7 

COMBINED MODEL VS. ACTUAL FREQUENCY 
WHEN PUBLIC ESTIMATE IS LESS THAN MODEL 
ESTIMATE 

range n e x p .  act. Z 

.ooo-,010 

.010-.025 

.025-.050 

.059-.lo0 

.loo-. 1 50 

. 1 50-,200 

.200-.250 
,250-,300 
,300-.400 

> .400 

742 
2498 
3488 
451 1 
2499 
1426 
813 
500 
460 
199 

,007 
,018 
,037 
.072 
. 1 23 
.173 
,223 
.272 
.342 
.485 

.004 

.o 1 9 
,041 
,069 
,122 
,174 
,215 
.270 
.31 1 
.477 

#races = 3198, # horses = 17136 

-0.9 
0.6 
1.4 
-0.7 
-0.1 
0.1 

-0.5 
-0.1 
-1.4 
-0.2 

Observe that the above tables show no significant bias one way or the other. 

ASSESSING THE VALUE OF A HANDICAPPING MODEL 

The log likelihood function of equation (2) can be used to produce a measure of f i t  analogous to 
the R' of multiple linear regression (Equation 3). This pseudo-R* (I? ) can be used to compare models 
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and to assess the value of a particular model as a betfing tool. Each set of probability estimates, either 
the public's or those of a model, achiwe a certain f f ,  defined as (Bolton and Chapman, 1986) 

The f f  value is a measure of the "explanatory power" of the model. An f f  of 1 indicates perfect 
predictive ability while an f f  of 0 means that the model is no better than random guessing. An 
important benchmark is the f f  value achieved by the public probability estimate. A heuristic measure 
of the potential profitability of a handicapping model, borne out in practice, is the amount by which 
its inclusion in the combined model of equation (1) along with the public probability estimate causes 
the f f  to increase over the value achieved by the public estimate alone: 

& = f f c  - f f ,  (4) 

where the subscript P denotes the public's probability estimate and c stands for the combined 
(fundamental and public) model of equation (1) above. In a sense, & may be taken as a measure of 
the amount of information added by the fundamental model. In the case of the models which produced 
Tables 1,2 and 5 above these values are: 

f f ,  = ,1218 (public) 
f f ,  = .1245 (fundamental model) 
f f ,  = ,1396 (combined model) 

MC., = .1396 - .I218 = ,0178 

'Though this value may appear small, it actually indicates that sigruficant profits could be made with 
that model. The hR' value is a useful measure of the potential profitability of a particular model. It can 
be used to measure and compare models without the the time consuming step of a full wagering 
simulation. In the author's experience, greater & values have been invariably associated with greater 
wagering simulation profitability. To illustrate the point that the important criteria is the gain in f f  in 
the combined model over the public's f f ,  and not simply the f f  of the handicapping model alone, 
consider the following two models. 

The first is a logitderived fundamental handicapping model using 9 signif'icant fundamental factors. 
It achieves an outaf-sample f f  of .1016. The second is a probability estimate derived from tallying the 
picks of approximately 48 newspaper tipsters. (Figlewski, 1979) The tipsters each make a selection for 
lst, 2nd, and 3rd in each race. The procedure was to count the number of times each horse was 
picked, awarding 6 points for lst, 3 points for 2nd and 1 point for 3rd. The point total for each horse 
is then divided by the total points awarded in the race (i.e. 48 * 10). This fraction of points is then 
taken to be the 'tipster' probability estimate. Using the log of this estimate as the sole independent 
variable in a logit model produces an f f  of ,1014. On the basis of their stand-alone f f ' s  the above two 
models would appear to be equivalently informative predictors of race outcome. Their vast difference 
appears when we perform the 'second stage' of combining these estimates with the public's. The 
following results were derived from logit runs on 2313 races (September 1988 to June 1993). 

f f ,  = ,1237 (publicestimate) 
f f ,  = .lo16 (fundamentalmodel) 
ffT = .lo14 (tipster model) 

ffFIP) = .1327 
ffflkP) = .I239 

(fundamental and public) 
(tipster and public) 
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As indicated by the & values, the tipster model adds very little to the public's estimate. The 
insignificant contribution of the tipster estimate to the overall explanatory power of the combined 
model effectively means that when there is a difference between the public estimate and the tipster 
estimate, then the public's estimate is superior. The fundamental model on the other hand, does 
contribute significantly when combined with the public's. For a player considering betting with the 
'tipster' model, canying out this 'second stage' would have saved that player from losing money; the 
output of the second stage model would always be virtually identical to the public estimate, thus never 
indicating an advantage bet. 

WAGERING STRATEGY 

AAer computing the combined and therefore unbiased probability estimates as described above, 
one can make accurate estimations of the advantage of any particular bet. A way of expressing 
advantage is as the expected return per dollar bet: 

expectedreturn = cr = c * d i v  
advantage = er - 1 

where c is the estimated probability of vhmbg the bd and div is the expected dividend. For win 
betting the situation is straightforward. The c's are the pFebability estimates produced by equation (1) 
above, and the div's are the win dividends (as a payoff for a S 1  bet) displayed on the tote board. The 
situation for an example race is illustrated in Table 8. 

Table 8 

d c  p er div 

1) ,021 
2) ,125 
3) ,239 
4) ,141 
5) .066 
6) .012 
7) ,107 
8 )  ,144 
9) ,019 

10) ,067 
11) .012 
12) .028 
13) ,011 
14) .GO9 

.025 .68 33 
,088 1.17 9.3 
,289 .69 2.8 
,134 .87 6.1 
.042 1.29 19 
.013 .75 61 
,136 .64 6.0 
,089 1.33 9.2 
.014 1.18 60 
,066 .86 12  
,012 .83 68u 
,047 .50 17 
.027 .32 3 0  
.019 .41 43 

c = combined (second stage) probability estimate 
p = public's probability estimate (I-take) / div 

er = expected return on a $1 win bet 
div = win dividend for a S 1 bet 

The 'u' after the win dividend for horse #11 stands for unratable and indicates that t ius is a horse for 
which the fundamental model could not produce a probability estimate. Often this is because the horse 
is running in its first race. A good procedure for handling such horses is to assign them the same 
probability as that implied by the public win odds, and renormalize the probabilities on the other 
horses so that the total probability for the race sums to 1, This is equivalent to saying that we have no 
information which would allow us to dispute the public's estimate so we will take theirs. 

From Table 8 we can see that the advantage win bets are those with an er &eater than I.  There is 
a positive expected return from betting on each of these horses. Given that there are several different 
types of wager available, it is necessary to have a strategy for determining which bets to make and in 
what amounts. 

Kelly Betting andpool size limitations 

Given the high cost in time and effort of developing a winning handicapping system, a wagering 
strategy which produces maximum expected profits is desirable. The stochastic nature of horse race 
wagering however, guarantees that losing streaks of various durations will occur. Therefore a strategy 
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which balances the tradeoff between risk and returns is necessary. A solution to t h i s  problem is 
provided by the Kelly betting strategy (Kelly, 1956). The Kelly strategy specifies the fraction of total 
wealth to wager so as to maximize the exponential rate of growth of wealth, in situations where the 
advantage and payoff odds are known. As a fixed fraction strategy, it also never risks ruin. (This last 
point is not strictly true, as the mimimum bet limit prevents strict adherence to the strategy.) For a 
more complete discussion of the properties of the Kelly strategy see MacLean, Ziemba and Blazenko 
(1992), see also Epstein (1977) and Brecher (1980). 

The Kelly strategy defines the optimal bet (or set of bets) as those which maximize the expected 
log of wealth. In pari-mutuel wagering, where multiple bets are available in each race, and each bet 
effects the final payoff odds, the exact solution requires maximizing a concave logarithmic function of 
several variables. For a single bet, assuming no effect on the payoff odds, the formula simplifies to 

(advantage) 

(dividend - 1) 
K =  (5 )  

where K is the fraction of total wealth to wager, When one is simultaneously making wagers in 
multiple pools, further complications to the exact multiple bet Kelly solution arise due to 'exotic' bets 
in which one must specify the order of finish in two or more races. The expected returns from these 
bets must be taken into account when calculating bets for the single race pools in those races. 

In the author's experience, betting the full amount recommended by the Kelly formula is unwise 
for a number of reasons. Firstly, acmate  estimation of the advantage of the bets is critical; if one 
overestimates the advantage by more than a factor of two, Kelly betting will cause a negative rate of 
capital growth. (As a practical matter, many factors may cause one's real-time advantage to be less 
than past simulations would suggest, and very few can cause it to be greater. Overestimating the 
advantage by a factor of two is easily done in practice.) Secondly, if it is known that regular 
withdrawals from the betting bankroll will be made for paying expenses or taking profits, thcn one's 
effective wealth is less than their actual current wealth. Thirdly, full Kelly betting is a 'rough ride', 
downswings during which more than 50% of total wealth is lost are a common occurrence. For these 
and other reasons, ajractional Kelly betting strategy is advisable, that is, a strategy wherein one bets 
some fraction of the recommended Kelly bet (e.g. 1/2 or 1/3), For further discussion of fractional 
Kelly betting, and a quantitative analysis of the riskheward tradeoffs involved, see MacLean, Ziemba 
and Blazenko (1992). 

Another even more important constraint on betting is the effect that one's bet has on the 
advantage. In pari-mutuel betting markets each bet decreases the dividend. Even if the bettor 
possesses infinite wealth, there is a maximum bet producing the greatest expected profit, any amount 
beyond which lowers the expected profit. The maximum bet can be calculated by writing the equation 
for expected profit as a function of bet size, and solving for the bet size which maximizes expected 
profit. This maximum can be surprisingly low as the following example illustrates. 

C div er 
06 20 1.20 

total pool size = $100,000 

expected profit= $39.60 
maximum er bet= $416 

A further consideration concerns the shape of the 'expected profit versus bet size' curve when the 
bet size is approaching the maximum. In this example, the maximum expected profit is with a bet of 
$416. If one made a bet of only 2/3 the maximum, i.e. $277, the expected profit would be 35.5 dollars, 
or 90% of the maximum. There is very little additional gain for risking a much larger sum of money. 
Solving the fully formulated Kelly model (i.e. taking into account the bets' effects on the dividends) 
will optimally balance this tradeoff. See Kallberg and Ziemba (1994) for a discussion of the 
optimization properties of such formulations. 

As a practical matter; given the relatively small sizes of most pari-mutuel pools, a successful 
betting operation will soon find that all of its bets are pool-size-limited. As a rule of thumb, as the 
bcttor's wealth approaches the total pool size, the dominant factor limiting bet size becomes the effect 
of the bet on the dividend, not the bettor's wealth. 
I*..xotic bets 
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In addition to win bets, racetracks offer numerous so-called exotic bets. These offer some of the 
highest advantage wagering opportunities. This results from the multiplicative effect on overall 
advantage of combining more than one advantage horse. For example, suppose that in a particular 
race there are two horses for which the model's estimate of the win probability is greater than the 
public's, though not enough so as to make them positive expectation win bets. 

c div p er 
1) .115 8.3 ,100 ,955 
2) ,060 16.6 ,050 ,996 

By the Harville formula (Harville 1973), the estimated probability of a 1,2 or 2.1 finish is 

C,,, = ( . l l 5  * .060)/(1 - .115) + (.060 * .115)/(1 - ,060) = ,0151 . 
The public's implied probability estimate is 

PI=, = (.lo0 * .050)/(1 - ,100) + (.050 * .lOO)/(l - ,050) = ,0108. 

Therefore (assuming a 17% track take) the public's rational quinella dividend should be 

qdiv z (1 - .17)/.0108 = 76.85 . 
Assuming that the estimated probability is correct the expected return of a bet on this combination is 

er = .0151 * 76.85 = 1.16. 

In the above example two horses which had expected returns of less than 1 as individual win bets, 
in combination produce a 16% advantage quinella bet. The same principle applies, only more so, for 
bets in which one must specify the finishing positions of more than two horses. In ultra-exotic bets 
such as the pick-six, even a handicapping model with only modest predictive ability can produce 
advantage bets. The situation may be roughly summarized by stating that for a bettor in possession of 
accurate probability estimates which differ from the public estimates; 'the more exotic (i.e. specific) 
the bet, the higher the advantage'. Place and show bets are not considered exotic in this sense as they 
are less specific than normal bets. The probability ditferences are 'watered down' in the place and 
show pools.2 Some professional players make only exotic wagers to capitalize on this effect. 

First, Second, and Third 

In exotic bets that involve specifying the finishing order of two or more horses in one race, a 
method is needed to estimate these probabilities. A popular approach is the Harville formula. 
(Handle, 1973): 

For three horses ( i, j, k ) with win probabilities ( R,, 
probability that they will finish in order as 

3 ) the Harville formula specifies the 

np jR ~ 

(1-7$)( l - R i - R j )  

- - 
R -  e 

This formula is significantly biased, and should not be used for betting purposes, as it will lead to 
serious errors in probability estimations if not corrected for in some way.' (Henery 1981, Stem 1990, 
Lo and Bacon-Shone 1992). Its principle deficiency is the fact that it does not recognize the 
increasing randomness of the contests for second and third place. The bias in the Harville formula is 
demonstrated in Tables 9 and 10 which show the formula's estimated probabilities for horses to finish 
second and third given that the identity of the horses finishing first (and second) are known. The data 
set used is the same as that which produced Table 1 above. 
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Table 9 Table 10 

HARVILLE MODEL CONDITIONAL PROBABILITY OF HARVILLE MODEL CONDITIONAL PROBABILITY OF 
2ND 

range n exp. 

,000-,010 
,010-,025 
,025-,050 
.050-,100 
.loo-. 150 
. 1 50-,200 
.ZOO-. 250 
250-.300 
.300-.400 

> .400 

962 .007 
3449 .Ol8 
5253 ,037 
7682 .073 
4957 ,123 
3023 ,173 
1834 ,223 
1113 .272 
1011 .338 
395 ,476 

# racas = 3198. X horses = 

act. 

,010 
.030 
.045 
,080 
,132 
,161 
,195 
.243 
,317 
.372 

29679 

z 

0.9 
5.3 
2.8 
2.3 
1.9 

-1.8 
-3.0 
-2.3 
-1.4 
-4.3 

3R0 

range n 

,000-,010 660 
,010-.025 2680 
.025-,050 4347 
.050-,100 6646 
.100-.150 4325 
,150-.200 2923 
200-.250 1831 
.250-.300 1249 
.300-.400 1219 

>.400 601 

X racas = 3198, X 

exp. act. 

.007 ,009 

.018 ,033 
,037 ,062 
.073 .087 
,123 .136 
,173 .178 
,223 ,192 
.273 ,213 
.341 ,273 
.492 ,333 

horses = 26481 

z 

0.5 
4.3 
6.8 
4.0 
2.5 
0.7 

-3.4 
-4.9 
-5.3 
-8.3 

The large values of the Z-statistics show the significance of the bias in the Harville formula. The 
tendency is for low probability horses to finish second and third more often than predicted, and for 
high probability horses to finish second and third less often. The effect is more pronounced for 3rd 
place than for 2nd. An effective, and computationally economical way to correct for t h i s  is as follows: 

Given the win probability array, (n, (I- ,z. ), create a second array o such that, 

and a third array T such that, 

The probability of the three horses ( ij ,k ) finishing in order I s  then 

The parameters y and 6 can be estimated via maximum likelihood estimation on a sample of past 
races. For the above data set the maximum likelihood values of the parameters are y = .81 and 6 = .65. 
Reproducing Tables 9 and 10 above using equations (7-9) with these parameter values substantially 
corrects for the Harville formula bias as can be seen in Tables 11 and 12. 
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Table 11 Table 12 

LOGISTIC MODEL CONDITIONAL PROBABILITY OF 
2ND ( 7  = .81 3RD ( 6  = .65 ) 

LOGISTIC MODEL CONDITIONAL PROBABILITY OF 

range 

.ooo-,010 
,010-,025 
,025-,050 
.050-.lo0 
.loo-. 1 50 
.150-,200 
,200.. 250 
,250-. 300 
,300-.400 

> .400 

n 

251 
2282 
5195 
8819 
6054 
3388 
1927 

973 
616 
174 

exp. 

,008 
,018 
.037 
,074 
.123 
.173 
,222 
,272 
.336 
,456 

act. 

.o 1 2 

.024 
,033 
.073 
,125 
.176 
.216 
.275 
,349 
,397 

Z 

0.6 
1.9 

-1.6 
-0.4 
0.5 
0.5 

-0.8 
0.2 
0.7 
-1.6 

range 

,000-,010 
.010-.025 
,025-,050 
,050-,100 
.loo-. 150 . 1 50-,200 
,200-.250 
,250-,300 
.300-.400 

> ,400 

n 

4 
712 

3525 
8272 
6379 
3860 
2075 

921 
582 
151 

exp. 

,009 
,020 
,039 
,075 
.123 
.172 
.222 
,271 
.337 
,480 

act. 

.ooo 
,010 
,035 
.073 
,130 
.175 
,228 
,268 
,299 
,450 

z 

-0.2 
-2.7 
-1.3 
-0.7 
1 .? 
0.5 
0.7 

-0.2 
-2.0 
-0.7 

X races = 3198, # horses = 29679 # races = 3198. # horses = 26481 

The better fit provided by this model can be readily seen from the much smaller discrepancies between 
expected and actual frequencies. The parameter values used here should not be considered to be 
universal constants, as other authors have derived significantly different values for the parameters y 
and 6 using data from different racetracks (Lo, Bacon-Shone and Busche, 1994). 

FEASIBILITY 

A computer based handicapping and betting system could in princple be. developed and 
implemented at most of the world's racetracks. Today's portable computers have suificient capacity 
not only for real-time calculation of the bets, but for model development as well. However, several 
important factors should be considered in selecting a target venue, as potential profitability varies 
considerably among racetracks. The following are a few practical recommendations based on the 
author's experience. 

Data availability 

A reliable source of historical data must be available for developing the model and test samples. 
The track must have been in existence long enough, running races under conditions similar to today, 
in order to develop reliable predictions. Data availability in computer form is of great help, as data 
entry and checking are extremely time-consuming. The same data wd in model development must 
also be available for real-time computer entry sufficient time before the start of each race. 
Additionally, final betting odds must be available over the development sample for the 'combined' 
model estimation of equation (1) as well as for wagering simulations. 

Ease of operation 

Having an accurate estimate of the final odds is imperative for betting purposes. Profitability will 
suffer greatly if the final odds are much diEferent than the ones used to calculate the probabilities and 
bet sizes. The ideal venue is one which allows off-track telephone betting, and disseminates the odds 
electronically. This enables the handicapper to bet from the convenience of an office,.and eliminates 
the need to take a portable computer to the track and type in the odds from the tote board at the last 
minute. Even given ideal circumstances, a professional effort will require several participants. Data 
entry and verification, general systems programming, and ongoing model development all require 
full-time efforts, as well as the day-today tasks of running a small business. Startup capital 
requirements are large, (mainly for research and development) unless the participants forgo salaries 
during the development phase. 

Beatability of the opposition 

Pari-mutuel wagering is a cornpetion amongst participants in a highly negative sum game. 
Whether a sutficiently ellcclivc model can be developed depends on the predictability of the racing, 
and the level of skill of fellow bettors. If the races are largely dishonest, and the public odds are 
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dominated by inside information then it is unlikely that a fundamental model will perform well. Even 
if the racing is honest, if the general public skill level is high, or if some well financed minority is 
skillful, then the relative advantage obtainable will be less. Particularly unfavorable is the presence of 
other computer handicappers. Even independently developed computer models will probably have a 
high correlation with each other and thus will be lowering the dividends on the same horscs, reducing 
the profitability for all. Unfortunately, it is difkult to know how great an edge can be achieved at a 
particular track until one develops a model for that track and tests it, which requires considerable 
effort. Should that prove successful, there is still no guarantee that the future will be as profitable as 
past simulations might indicate. The public may become more skillful, or the dishonesty of the races 
may increase, or another computer handicapper may start playing at the same time. 

Pool size limitations 

Perhaps the most serious and inescapable limitation on profitability is a result of the finite 
amount of money in the betting pools. The high track take means that only the most extreme public 
probability mis-estimations will result in profitable betting opportunities, and the maximum bet size 
imposed by the bets' effects on the dividends limits the amount that can be wagered. Simulations by 
the author have indicated that a realistic estimate of the maximum expected profit achievable, as a 
percentage of total per-race m o v e r ,  is in the range of 0.25 - 0.5 per cent. This is for the case of a 
player with an effectively infinite bankroll. It may be true that at tracks with small pool sizes, that this 
percentage is higher due to the lack of sophistication of the public, but in any case, it is unlikely that 
this value could exceed 1.5 per cent. A more realistic goal for a start-up operation with a bankroll 
equal to approximately one half of the per-race m o v e r  might be to win between 0.1 and 0.2 per cent 
of the total track turnover. The unfortunate implication of this is that at small volume tracks one could 
probably not make enough money for the operation to be viable. 

Racetracks with small betting volumes also tend to have highly volatile betting odds. In order to 
have time to calculate and place one's wagers it is necessary to use the public odds available a few 
minutes before post time. The inaccuracy involved in using these volatile pre-post-time odds will 
decrease the effectiveness of the model. 

RESULTS 

The author has conducted a betting operation in Hong Kong following the principles outlined 
above for the past five years. Approximately five man-years of effort were necessary to organize the 
database and develop a handicapping model which showed a significant advantage. An additional five 
man-years were necessary to develop the operation to a high level of profitability. Under near-ideal 
circumstances, ongoing operations still require the full time effort of several persons. 

A sample of approximately 2000 races (with complete past performance records for each entrant) 
was initially used for model development and testing. Improvements to the model were made on a 
continuing basis, as were regular re-estimations of the model which incorporated the additional data 
accumulated. A conservative fractional Kelly betting strategy was employed throughout, with wagers 
being placed on all positive expectation bets available in both normal and exotic pools (except place 
and show bets).4 Extremely large pool sizes, ( > USD $10,000,000 per race turnover ) made for low 
volatility odds, therefore bets could be placed with accurate estimations of the final public odds. Bets 
were made on all available races except for races containing only unratuble horses (-5%), resulting in 
approximately 470 races bet per year. The average track take was -19% during this period. 

Four of the five seasons resulted in net profits, the loss incurred during the losing season being 
approximately 20% of starting capital. A strong upward trend in rate of return has been observed as 
improvements were made to the handicapping model. Returns in the various betting pools have 
correlated well with theory, with the rate-of-return in exotic pools being generally higher than that in 
simple pools. While a precise calculation has not been made, the statistical significance of this result 
is evident. Following is a graph of the natural logarithm of [(wealth) / (initial wealth)] versus races 
bet. 
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RESULTS 
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CONCLUSION 

The question; "Can a system beat the races?" can surely be answered in the affirmative. The 
author's experience has shown that at least at some times, at some tracks, a statistically derived 
fundamental handicapping model can achieve a significant positive expectation. It will always remain 
an empirical question whether the racing at a particular track at a particular time can be beaten with 
such a system. It is the author's conviction that we are now experiencing the golden age for such 
systems. Advances in computer technology have only recently made portable and affordable the 
processing power necessary to implement such a model. In the future, computer handicappers may 
become more numerous, or one of the racing publications may start publishing competent computer 
ratings of the horses, either of which will likely caw the market to become efficient to such 
predictions. The profits have gone, and will go, to those who are 'in action' first with sophisticated 
models*+. 

*An earlier version of this paper was presented at the ORSAITIMS Joint National Meeting in 
Phoenix, Arizona on November 1, 1993. 

T h e  author wishes to thank Professor George Miel (University of Nevada, Las Vegas), Paul 
COhdonatO, Randall G. Chapman, and the editors of this volume for many helpful comments, 
suggestions, and corrections. 
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NOTES 

'One technique to alleviate the negative consequences of biases which lead to the over-estimation of 
advantage is to employ a betting rule which specifies a minimum estimated advantage necessary for 
making a bet. In Ziemba and Hausch (1987) the authors suggest a mimimum advantage of 10% to 
account for the bias in their place and show betting model. Also, in their model the authors use place 
and show probabilities so the often present favorite-longshot win bias tends to cancel with the second 
and third place reverse bias. For simple probability estimations these schemes can work well, but in 
exotic bets whose probabilities are the products several individual win probabilities, the calculation of 
the correct minimum advantage becomes exceedingly complex. The author advocates the practice of 
correcting the probabilities first and then calculating the betting advantage. 

2A similar calculation to the one Carried out in the quinella pool example above shows that a horse 
with a positive expected return in the win pool will have a lower expected return as a place or show 
bet, given that the public bets consistently in the merent  pools. This effect is different than the one 
which produced advantages in the place and show pools for Ziemba and Hausch (1987). There the 
advantages arose because of inconsistencies bemeen the public's estimated win probability for a horse, 
and the amount bet on that horses in the place or show pools. 

3The bias in this formula is not as serious when used with win probabilities that show a significant 
favorite-longshot bias. The favorite-longshot bias often observed at racetracks (Ali, 1977) tends to 
cancel out the Harville formula bias in estimating second and third place probabilities. 

4Betting off-track, the author did not have access to real-time show pool betting information. (Place 
betting in the North American sense is not available in Hong Kong.) Without individual horse show 
pool betting information, one can always achieve higher advantages by betting in 'exotic' pools such 
as quinella and trifecta. This follows from the above cited principle of 'the more specific the bet, the 
higher the advantage'. (See Note 2 above) 

APPENDIX 

HANDICAPPING REFERENCES' 

Ainslie, Tom, Ainslie's Complete Guide to Thoroughbred Handicapping, (New York: Simon & 
Schuster, 1979) 

Beyer, Andrew, Picking Winners, (Boston, MA: Houghton Mifflin Company, 1975) 

Jones, Glendon, Horse Racing Logic, (New York: Vantage Press, 1989) 

Quinn, J., The ABC's of Thoroughbred Handicapping, (New York: William Morrow and Company, 
1988) 

Quirin, William L, Winning at the Races: Computer Discoveries in Thoroughbred Handicapping, 
(New York: William Morrow and Company, 1979) 

Scott, Don, The Winning Way, (Sydney: Puntwin FTY Limited, 1982) 

'The following is a partial list of references which the author has found helpful in suggesting ideas for 
significantfactors. A useful source for difficult to find books on handicapping is 'The Gambler's Book 
Club' in Las Vegas, Nevada. 
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